当前位置: 首页prmt5

prmt5

一文总结:肺癌17个新靶点和新靶向药物

一文总结:肺癌17个新靶点和新靶向药物

本文对肺癌的潜力靶点和靶向药物进行了全面梳理,这里面包括了近两年全球范围内首次进入临床试验的“First in class”靶点,和近两年中国开始追逐海外脚步展开临床探索的“Fast follow”靶点,并结合最新临床试验进展梳理。 1 ALK靶点机制 间变性淋巴瘤激酶(ALK)与众多受体酪氨酸激酶(RTKs)共享信号传导途径,异常激活后引起细胞向恶性转化并无序增殖。 2007年,日本肺癌患者中首次报道了ALK基因与棘皮动物微管相关蛋白样-4(EML4)基因融合的现象。该融合基因编码产生的嵌合蛋白,含有EML4氨基端和ALK羧基端,后者包括ALK的整个胞内酪氨酸激酶结构域,该结构域的异常表达通过自身磷酸化活化下游RAS/MAPK、PI3K/AKT和JAK/STAT3等通路。 ALK融合基因存在不同变异,对ALK酪氨酸激酶抑制剂(ALK TKI)的敏感性可能因此存在差异。ALK融合与数十种肿瘤的发生、发展密切相关,目前研究进展较快的是非小细胞肺癌(NSCLC)领域。 相比于EGFR经典突变,ALK阳性(多表现为ALK重排)在晚期NSCLC中的发生率相对较低,占3%~5%,属于相对罕见的靶点,但却是研究非常活跃的靶点。随着ALK抑制剂的研究越来越成熟,ALK阳性晚期NSCLC正在逐步实现“慢病化”。 第一、二、三代针对ALK-TKI上市,极大地延长了ALK融合晚期NSCLC患者的总生存期。 已在中国上市的该类药物有第一代克唑替尼、第二代塞瑞替尼、阿来替尼及2022年3月刚刚获批的布格替尼,适应证为ALK阳性晚期NSCLC的一线及后线治疗。 首个国产的恩沙替尼已于2020年底获批作为二线治疗药物,近期又获得了一线治疗的适应证。美国TurningPoint Therapeuti治疗公司研发的第四代ALK抑制剂Repotretinib(TPX-0005)和TPX-0131正处于研究开发阶段。该药对ROS1、NTRK和ALK阳性的实体瘤显示出强大的抗癌活性,能够较好地克服多种ALK耐药突变,包括ALK复合突变,并且具有优越的脑渗透性。 2 BRAF靶点机制 BRAF基因是一种原癌基因,位于染色体7q34,编码丝氨酸/苏氨酸蛋白激酶,是RAF家族的成员之一。 BRAF蛋白与KRAS蛋白同为RAS-RAF-MEK-ERK信号通路中上游调节因子,使MEK、ERK蛋白相继磷酸化,是激活参与细胞增殖和生存的相关基因。突变的BRAF蛋白增强了激酶的活性,其中具有致癌及治疗价值的是BRAF V600突变,主要包括V600E和V600K突变,引起下游信号活化而致癌。 BRAF突变一般与EGFR、KRAS等突变相互独立和排斥,并且不同时出现。按照作用靶点的不同,BRAF抑制剂可分为多靶点激酶抑制剂和BRAF V600E(单靶点)特异性抑制剂两类。特异性BRAF V600E(单靶点)抑制剂,达拉非尼(Dabrafenib)对BRAF尤其是BRAF V600E有很高的抑制活性,可联合MEK抑制剂曲美替尼用于BRAF V600E突变的肺癌患者。 3 CD39靶点机制 CD39是一种细胞膜蛋白,是由胞外核苷酸三磷酸盐二磷酸水解酶(ENTPD)基因编码的一种胞外核苷酸水解酶,属于ENTPD1家族,具有三磷酸腺苷(ATP)酶和二磷酸腺苷(ADP)酶活性,可将胞外ATP和ADP水解为单磷酸腺苷(AMP)。 CD39其参与催化产生的细胞外腺苷(ADO)在肿瘤微环境中具有重要的免疫抑制作用。ATP-腺苷(ATP–adenosine)途径是TME中先天性和适应性免疫的关键调节剂。应激或死亡细胞释放的ATP可提供炎症信号,这对有效的先天和适应性免疫反应至关重要。 相反,细胞外ATP(eATP)水解成胞外腺苷则限制了免疫反应。eATP水解成胞外腺苷的过程主要通过CD39和CD73两种外切酶的级联反应发生,其中CD39是eATP水解中的关键限速酶。CD39可结合eATP并将其转化为细胞外腺苷,抑制免疫反应。 研究表明,CD39在各种人类肿瘤中均呈现高表达现象,CD39主要表达于内皮细胞和免疫细胞,其在淋巴瘤、肉瘤、肺癌、胰腺癌、卵巢癌等人类肿对肿瘤微环境(TME)起着至关重要的免疫调节作用。 CD39靶向药在肿瘤治疗中扮演着重要的角色,其主要通过以下两方面达到抗肿瘤作用,一方面是阻断CD39 ATP酶活性,可提高肿瘤微环境(TME)中有促炎和促细胞增殖作用的ATP水平,另一方面是抑制下游产物ADO的累积,进而降低调节性T细胞的免疫抑制功能并长期建立免疫抑制性。 4 CD70靶点机制 正常组织中CD70是一种Ⅱ型跨膜糖蛋白,仅短暂地表达在活化的T细胞、B细胞及成熟的树突状细胞(DC)中。CD70受体为CD27,CD27作为一种协同刺激的T细胞受体,与0X40、4-1BB的共刺激还促进活化T细胞的存活,是T细胞启动和记忆分化的关键;CD70与CD27的作用可以促进T细胞和B细胞的活化、增殖及分化,调节免疫应答。 正常情况下CD70主要在活化的淋巴细胞表达,病理情况下CD70高表达于多种肿瘤组织,肿瘤细胞通过表达CD70结合T细胞受体CD27,慢性的共刺激导致T细胞表达PD-1、TIM-3等免疫检查点,从而导致免疫功能耗竭,可以诱导免疫逃逸。 因此,CD70可作为肿瘤治疗的潜在靶点,给肿瘤的免疫治疗带来新的方向。鉴于CD70在肺癌、肾细胞癌、血源性肿瘤、中枢神经系统胶质瘤等多种恶性肿瘤中均异常表达,与肿瘤的发生发展及患者的预后密切相关,可作为恶性肿瘤早期诊断的新型生物标志物、临床诊断治疗及监测疾病预后的新靶点。 5 FGFR靶点机制 肿瘤微环境重要的组成之一,即肿瘤相关成纤维细胞;其与正常纤维细胞相比,是体积较大的纺锤形间充质细胞;活性受肿瘤细胞分泌的生长因子调控;同时,其自身还可以分泌成纤维细胞生长因子(FGF)。 FGF作为FGFR的配体家族,由22个功能不同的配体组成,其中18个配体通过4个高度保守的跨膜酪氨酸激酶受体FGFR1-4发挥作用,配体与受体结合可促进受体二聚化,激活下游信号传导通路,如PLC-γ/Ca2+、RAS/MAPK、FRS2/PI3K/AKT及PLC-γ/PKC等通路。这些信号传导途径在多种生理过程如细胞增殖、分化、迁移和凋亡中均起着至关重要的作用。 FGFR在多种细胞类型上表达。当FGFR发生突变或过表达时,会引起FGFR信号通路过度激活,并进一步诱发正常细胞癌变。 研究发现,多种肿瘤的发生中伴随着肿瘤组织的FGFR过表达和激活,它们可促进肿瘤血管形成和肿瘤细胞分裂增殖等。 FGFR作为受体酪氨酸激酶(RTKs)超家族的一员,几乎在各种恶性肿瘤中均存在不同程度的异常,发生率较高的恶性肿瘤有尿路上皮癌、胆管癌、乳腺癌、子宫内膜癌和鳞状上皮癌等;同时,在肺癌、肝癌及乳腺癌等肿瘤中也发现了FGFR的异常激活。 因此,FGFR已经成为全球制药公司开发新型抗肿瘤药物的重要靶标之一,引起各国药物学家广泛关注。 6 FLI1靶点机制 Friend白血病病毒插入位点1(FLI1)是E26转化特异性因子转录因子家族的成员,主要在造血干细胞和血管内皮细胞中表达,作为转录因子,与多种基因启动子或增强子结合,参与多种基因与蛋转录与激活,如激活原癌基因BCL-2,抑制抑癌基因p53活性。 此外,FLI1还具有抑制造血细胞向红系分化的作用,降低红系相关转录因子GATA-1/2和TAL-1的表达。 FLI1最初是在Friend病毒诱导的小鼠红白血病细胞中发现的,近年来,越来越多研究显示FLI1在许多恶性肿瘤表达,如尤文肉瘤、小细胞肺癌、嗅神经母细胞瘤、恶性血管瘤、膀胱癌、白血病及淋巴瘤等恶性肿瘤,参与其病理生理过程。 7 FRA1靶点机制 FOS相关抗原1(FRA1)属于FOS蛋白家族,主要与JUN家族蛋白形成AP-1复合物,从而发挥作用。 转录因子复合物AP-1是在生物过程中调节基因转录的关键因素,多种肿瘤相关基因表达受AP-1调控;作为转录因子AP-1家族成员之一,原癌基因FRA1在肿瘤的发生和发展方面逐渐受到关注。FRA1的调节发生在转录和翻译后修饰的水平,主要修饰方式是磷酸化。 […]

半夏
AACR年会报道的PRMT5,究竟有多大潜力?

AACR年会报道的PRMT5,究竟有多大潜力?

文章来源:新浪医药   前不久,2021年AACR年会给肿瘤行业带来了最新的研究进展报告,部分领域形成了突破性的进展,如PRMT5靶点,被认为是另一个重要的风口。那么,该靶点当前是否已经满足了靶点的成药特点?其抑制剂是否已具备成药的潜力?请看本稿件。   1 PRMT5的大背景~表观修饰   表观修饰,主要包括DNA甲基化和组蛋白修饰;组蛋白修饰又主要包括甲基化、乙酰化、磷酸化、泛素化四种类型。   精氨酸甲基化,是组蛋白甲基化的一种,是哺乳动物中最常见的翻译后修饰之一,主要受PRMT基因家族调控。PRMTs可以将S腺苷甲硫氨酸(AdoMet/SAM)上的甲基基团转移到蛋白质精氨酸侧链的胍基氮原子上,生成甲基化精氨酸。PRMTs又以三种不同的形式调控精氨酸甲基化:单甲基精氨酸(MMA)、不对称二甲基精氨酸(ADMA)和对称二甲基精氨酸(SDMA)甲基化。   PRMTs主要包括9种亚型:分别为I型(PRMT1、2、3、4、6、8,主要催化生成MMA和ADMA)、II型(PRMT5、9,主要催化生成MMA和SDMA)和III型(PRMT7,主要催化生成MMA)。   图1.1  PRMT的催化功能&细胞过程(图片源:Trends in Molecular Medicine, 2019) 2 PRMT5~家族中研究火热 PRMT5,作为主要的II型精氨酸甲基转移酶,在哺乳动物的细胞核和细胞质中均有表达,可以甲基化组蛋白和多种非组蛋白,进而调控众多的生命过程。 细胞核内,PRMT5可与染色质重塑复合体SWI/SNF及核小体重构和组蛋白脱乙酰酶(NuRD)形成染色质重塑复合体,并甲基化修饰多种癌症相关基因和转录因子,进而调控特定靶基因的表达。 胞质中,PRMT5参与形成20S蛋白质精氨酸甲基转移酶复合物,形成“甲基体”。该复合体由剪切体Sm蛋白、PRMT5、pICln和WD重复蛋白(MEP50/WD45)组成,PRMT5甲基化Sm蛋白进而调控剪切体的活性和下游基因的表达。 图2.1  PRMT5基因表达&突变图谱(图片源:CNKI) 研究发现,PRMT5在许多类型的癌症中上调,包括淋巴瘤、肺癌、乳腺癌和结直肠癌,等;此外,PRMT5也可以抑制一些抑癌基因的转录,包括致瘤性抑制因子7、非转移性基因23、视网膜母细胞瘤家族和程序性细胞死亡4;这些均提示,PRMT5是一个治疗癌症的潜在靶点。 图2.2  PRMT5在人类肿瘤中的生物学特点(图片源:Biomedicine & Pharmacotherapy 114 (2019) 108790) 3 PRMT5抑制剂的开发 除本次AACR年会重点介绍的GSK-3326595外,进入到临床阶段的品种还有JNJ-64619178、PF-06939999,等。同时,研究较为广泛的还有早期的SAM类似物(DS-437)、CMP衍生物,等等。 图3.1  PRMT抑制剂关键开发时间表(图片源:Trends in Molecular Medicine, 2019) NO1: SAM类似物 2015年,通过共晶学数据发现了SAM类似物DS-437,可与PRMT5的谷氨酸形成氢键而结合,进而抑制它与SAM结合。后进一步确定,DS-437是PRMT5&PRMT7的双特异性抑制剂,它能抑制细胞中PRMT5底物发生对称二甲基化,而对其他29种人类蛋白质、DNA和RNA甲基转移酶没有活性。再进一步的动物实验发现,DS-437可抑制T细胞的功能并诱导肿瘤的免疫反应而显著改善小鼠体内的抗癌效果。   NO2: CMP衍生物 同是2015年,从包含10000种CMP的Chem Bridge CNS-Set文库中预测出8种可与PRMT5的SAM和精氨酸结合口袋相嵌合的小分子化合物,进一步细胞实验筛选出CMP5可特异性地抑制PRMT5的酶活性。淋巴瘤中,CPM5可抑制由EBV病毒驱动的B细胞永生化癌变,并重新激活抑癌基因PTPROt的表达。后在CPM5基础上通过结构优化得到抑制效果更佳的HLCL-61。在白血病中,HLCL-61可通过抑制PRMT5的活性而增强miR-29b的表达,进而激活多种下游通路。2016年进一步优化CPM5结构,合成出世界上首个具有口服活性的PRMT5小分子抑制剂EPZ015666。 NO3: GSK3326595 2019年,发现GSK3326595可以与PRMT5/MEP50复合体形成共晶,抑制其甲基转移酶的功能;而且它与PRMT5/MEP50复合体结合的特异性远高于其他20种甲基化转移酶(如PRMT9)。GSK3326595对多种肿瘤的抑制效果,发现对乳腺癌、AML和骨髓瘤的抑制效果最佳。机制上,GSK3326595通过干扰PRMT5/MEP50的功能,影响细胞内剪切、RNA加工、转录和翻译等相关基因的甲基化修饰,调节细胞内RNA的稳态。另外,该药可促进细胞周期相关基因的表达,使癌细胞停滞在G1期,并诱导癌细胞死亡。GSK3326595还可抑制癌基因的表达,并重新激活抑癌基因。在淋巴瘤细胞系种,GSK3326595会使癌基因MDM4丢失第6外显子,丧失对p53通路的抑制作用,进而恢复p53通路的抗肿瘤活性。另,GSK3326595对p53野生型和突变型的肿瘤细胞抑制效果有显著差别。目前,GSK3326595已被应用于临床I期的液体瘤和实体瘤试验;并在本年的AACR年会报出积极的数据。   4 小结 […]

半夏
扫描下方二维码回复 666 获取解锁验证码
步骤:[ 打开微信]->[ 扫描上方二维码]->[关注"三阴姐妹互助圈"公众号输入 666 获取验证码],即可永久解锁本站全部文章
验证码: